Glycogen Metabolism

Biochemistry II By Dr. Wafaa AL-Jasim

DEGRADATION OF GLYCOGEN (GLYCOGENOLYSIS)

- The degradative pathway that mobilizes stored glycogen in liver and skeletal muscle is
- not a reversal of the synthetic reactions. Instead, a separate set of cytosolic enzymes is required.
- When glycogen is degraded, the primary product is glucose 1-phosphate,
- obtained by breaking α(1→4) glycosidic bonds. In addition, free glucose is released from each α(1→6)–linked glucosyl residue (branch point).

Shortening of chains

- Glycogen phosphorylase sequentially cleaves the $\alpha(1\rightarrow 4)$ glycosidic bonds between
- the glucosyl residues at the nonreducing ends of the glycogen chains by simple

phosphorolysis (producing glucose 1-phosphate) until four glucosyl units remain on each chain before a branch point.

- Phosphorylase contains a
- molecule of covalently bound pyridoxal phosphate that is required as a coenzyme.
- The resulting structure is called a limit dextrin, and phosphorylase cannot degrade it any further.

Removal of branches

- Branches are removed by the two enzymic activities of a single bifunctional protein,
- the 1st debranching enzyme, oligoα(1→4)→α(1→4)-glucantransferase activity removes the outer 3 of the 4 glucosyl residues attached at a branch.
- It next transfers them to the nonreducing end of another chain, lengthening it accordingly. Thus, an α(1→4) bond is broken and an α(1→4) bond is made, and the enzyme functions as a 4:4 transferase.

the remaining glucose residue attached in an α(1→6) linkage is removed hydrolytically by amylo-α(1→6)-glucosidase activity, releasing free glucose. The glucosyl chain is now available again for degradation by glycogen phosphorylase until four glucosyl units in the next branch are reached.

REGULATION OF GLYCOGENESIS AND GLYCOGENOLYSIS

- Because of the importance of maintaining blood glucose levels, the synthesis and
- degradation of its glycogen storage form are tightly regulated. In the liver, glycogenesis
- accelerates during periods when the body has been well fed, whereas glycogenolysis
- accelerates during periods of fasting.

- In skeletal muscle, glycogenolysis occurs during
- active exercise, and glycogenesis begins as soon as the muscle is again at rest.
- Regulation of glycogen synthesis and degradation is accomplished on two levels. First,
- glycogen synthase and glycogen phosphorylase are hormonally regulated (by
- phosphorylation/dephosphorylation) to meet the needs of the body as a whole.

- glycogen synthase is activated by
- **glucose 6-phosphate**, but **glycogen phosphorylase** is inhibited by **glucose 6- phosphate** as well as by **ATP**.
- In the liver, glucose also serves an an allosteric inhibitor of glycogen phosphorylase. The Ca2+ released from the endoplasmic
- reticulum in muscle during exercise and in liver in response to epinephrine activates phosphorylase kinase by
- binding to the enzyme's **calmodulin** subunit. This
- allows the enzyme to activate glycogen phosphorylase, thereby causing glycogen degradation.
- **AMP** activates glycogen phosphorylase in muscle.

Reference

- Lippincott's
- Illustrated Reviews:
- Biochemistry
- Sixth Edition